Nitrate Isotope Fractionation During Microbial Nitrate Reduction

Moritz F. Lehmann GEOTOP-UQAM-McGill, Montréal

GASIR Annual Meeting 11 October, 2005, MPI Jena

Thanks to:

Daniel Sigman, Greg Cane, Princeton University

Julie Granger, UBC, Vancouver

Dan McCorkle, Woods Hole Oceanographic Institution

Outline:

- The marine N-cycle, the global N budget
- N and O isotopes in nitrate; the utility of dual isotope approach
- Isotope effects during microbial denitrification (laboratory, lakes, ocean water column, marine sediments)

Ecological Significance of Nitrogen/Denitrification

• Primary nutrient in freshwater systems

•Control on eutrophication in lakes and reservoirs, as well as coastal and estuarine environments

•The ocean and lakes are significant sources of atmospheric $N_2 O$

•N is limiting nutrient in the ocean ("biological pump")

The marine N-cycle

The Oceanic fixed N Budget

Flux TgN/yr	Codispoti and Christensen 1985	Gruber and Sarmiento 1997	Brandes and Devol 2002
N ₂ Fixation	2.5	2.5	110-330
Rivers	25	42	
Atmosphere	25	15	2.5
Inputs Total	75	231	160-380
Benthic Denit.	60	95	200-280
W.C. Denit.	60	80	75
Sedimentation	21	25	25
Outputs Total	142	204	300-380
Imbalance	-70	0 +/- 50	0 or -200

With courtesy from C. Deutsch

Nitrate isotopes

Isotope definitions

N isotopes in nature: ${}^{14}N = 99.64\%$ ${}^{15}N = 0.36\%$

$$\delta^{15} N$$
 (% vs. air) = $\left(\frac{({}^{15}N/{}^{14}N)_{sample}}{({}^{15}N/{}^{14}N)_{air}} - 1\right) *1000$

Isotope effect:
$$\epsilon \sim \delta^{15}N_{react} - \delta^{15}N_{prod(inst)}$$

Kinetic isotope fractionation: Organisms preferentially utilize $^{\rm 14}{\rm N}{\rm -}$ bearing molecules \rightarrow substrate becomes enriched in $^{\rm 15}{\rm N}$

Nitrate isotopes	Contro de recherche en géochrana et en géochranaique
Use of Nitrate isotopes:	
Nitrate source indicator	
• Biogeochemical tracer (e.g., sedimentary vs. water column denitrification; nitrification/N ₂ fixation vs denitrification)	

Nitrate isotopes

Isotope effects: major fluxes

Galbreith et al. submitted

Twoendmember approach: Constraints on the relative importance of sedimentary vs. water column denitrification

- orders of magnitude smaller sample size requirement ammonium-based methods (~1 $\mu \text{mol})$
- detection limit currently I μ M NO₃
- precision for $\delta^{15} N$ is \pm 0.2 ‰
- precision for $\delta^{18}\text{O}$ is \pm 0.3 ‰

Pseudomonas chlororaphis

Benthic denitrification: Porewater nitrate isotope effect

N and O isotope profiles in the BS

Sedimentary denitrification !?

WOCE and GEOSECS Radiocarbon Bering Sea and Subarctic North Pacific

Why do we see a clear nitrate deficit in the Bering Sea and not elswhere in the (oxygenated) deep ocean?

Are the benthic denitrification rates higher than elsewhere?

Conclusions

- Nitrate δ^{15} O and δ^{18} O are useful biogeochemical tracers
- Combined nitrate N and O isotope analyses allow deconvolution of simultaneously occurring N-cycling reactions
- Linear relationship between N and O isotope enrichment, but different for freshwater and sea water
- Strong expression of nitrate isotope effects for both water column and porewater denitrification
- Organism-level denitrification isotope effects seem to be variable and may not be robust
- Sedimentary denitrification isotope effect barely expressed at scale of sediment-water nitrate exchange (Diffusion limitation)
- Combined with other oceanographic data, nitrate isotopes provide integrative constraints on large-scale N fluxes

Bering Sea:

• Absence of isotope effect associated with nitrate deficit points to the deep sediments as the main sink of fixed N

Open questions/Future Work

- What controls the ratio of ¹⁸O vs. ¹⁵N isotope enrichment during denitrification?
- What controls variability in N and O isotope effects during denitrification?
- Role of suboxic N₂ production processes other than denitrification (anammox) for N isotope balance?
- Role of NH₄⁺ and DON for nitrate isotope signatures in the water column?

